skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hutchings, J_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arctic cyclones are key drivers of sea ice and ocean variability. During the 2019–2020 Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, joint observations of the coupled air‐ice‐ocean system were collected at multiple spatial scales. Here, we present observations of a strong mid‐winter cyclone that impacted the MOSAiC site as it drifted in the central Arctic pack ice. The sea ice dynamical response showed spatial structure at the scale of the evolving and translating cyclonic wind field. Internal ice stress and ocean stress play significant roles, resulting in timing offsets between the atmospheric forcing and the ice response and post‐cyclone inertial ringing in the ice and ocean. Ice motion in response to the wind field then forces the upper ocean currents through frictional drag. The strongest impacts to the sea ice and ocean from the passing cyclone occur as a result of the surface impacts of a strong atmospheric low‐level jet (LLJ) behind the trailing cold front and changing wind directions between the warm‐sector LLJ and post cold‐frontal LLJ. Impacts of the cyclone are prolonged through the coupled ice‐ocean inertial response. Local impacts of the approximately 120 km wide LLJ occur over a 12 hr period or less and at scales of a kilometer to a few tens of kilometers, meaning that these impacts occur at combined smaller spatial scales and faster time scales than most satellite observations and coupled Earth system models can resolve. 
    more » « less